High and low molecular weight hyaluronic acid differentially influence macrophage activation.
نویسندگان
چکیده
Macrophages exhibit phenotypic diversity permitting wide-ranging roles in maintaining physiologic homeostasis. Hyaluronic acid, a major glycosaminoglycan of the extracellular matrix, has been shown to have differential signaling based on its molecular weight. With this in mind, the main objective of this study was to elucidate the role of hyaluronic acid molecular weight on macrophage activation and reprogramming. Changes in macrophage activation were assessed by activation state selective marker measurement, specifically quantitative real time polymerase chain reaction, and cytokine enzyme-linked immunoassays, after macrophage treatment with differing molecular weights of hyaluronic acid under four conditions: the resting state, concurrent with classical activation, and following inflammation involving either classically or alternatively activated macrophages. Regardless of initial polarization state, low molecular weight hyaluronic acid induced a classically activated-like state, confirmed by up-regulation of pro-inflammatory genes, including nos2, tnf, il12b, and cd80, and enhanced secretion of nitric oxide and TNF-α. High molecular weight hyaluronic acid promoted an alternatively activated-like state, confirmed by up regulation of pro-resolving gene transcription, including arg1, il10, and mrc1, and enhanced arginase activity. Overall, our observations suggest that macrophages undergo phenotypic changes dependent on molecular weight of hyaluronan that correspond to either (1) pro-inflammatory response for low molecular weight HA or (2) pro-resolving response for high molecular weight HA. These observations bring significant further understanding of the influence of extracellular matrix polymers, hyaluronic acid in particular, on regulating the inflammatory response of macrophages. This knowledge can be used to guide the design of HA-containing biomaterials to better utilize the natural response to HAs.
منابع مشابه
High and Low Molecular Weight Hyaluronic Acid Differentially Regulate Human Fibrocyte Differentiation
BACKGROUND Following tissue injury, monocytes can enter the tissue and differentiate into fibroblast-like cells called fibrocytes, but little is known about what regulates this differentiation. Extracellular matrix contains high molecular weight hyaluronic acid (HMWHA; ∼2×10(6) Da). During injury, HMWHA breaks down to low molecular weight hyaluronic acid (LMWHA; ∼0.8-8×10(5) Da). METHODS AND ...
متن کاملMolecular Dynamic Analysis of Hyaluronic Acid and Phospholipid Interaction in Tribological Surgical Adjuvant Design for Osteoarthritis.
Tribological surgical adjuvants constitute a therapeutic discipline made possible by surgical advances in the treatment of damaged articular cartilage beyond palliative care. The purpose of this study is to analyze interactions between hyaluronic acid and phospholipid molecules, and the formation of geometric forms, that play a role in the facilitated lubrication of synovial joint organ systems...
متن کاملHyaluronic acid production in vitro by synovial lining cells from normal and rheumatoid joints.
Organ cultures and primary cell cultures were established from synovial tissue collected from patients with rheumatoid arthritis. Hyaluronic acid measured by the incorporation of [3H]glucosamine into the polysaccharide was found to be synthesised in the cultures immediately after transfer from in-vivo to in-vitro conditions. This was in contrast to the primary cultures established from cells is...
متن کاملEfficacy, Safety, and Tolerance of a New Injection Technique for High- and Low-Molecular-Weight Hyaluronic Acid Hybrid Complexes
OBJECTIVE Facial aging is characterized by skin laxity and loss of skin elasticity. Hyaluronic acid, a biological component of the extracellular matrix, whose level decreases during aging, plays structural, rheological, and physiological roles in the skin. Hyaluronic acid may possess different molecular weights: low-molecular-weight hyaluronic acid (from 50 kDa) and high-molecular-weight hyalur...
متن کاملEffect of chondroitin sulfate and hyaluronic acid on gene expression in a three-dimensional culture of chondrocytes.
The effect of glycosaminoglycan addition on a three-dimensional (3D) culture of porcine chondrocyte cells was investigated with a view to use in cartilage regenerative medicine. Chondroitin sulfate C increased the mRNA expression of type 2 collagen, while chondroitin sulfate A did not. Hyaluronic acid of high molecular weight markedly decreased the mRNA expression of both aggrecan and type 2 co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS biomaterials science & engineering
دوره 1 7 شماره
صفحات -
تاریخ انتشار 2015